Low affinity membrane transporters increase the net substrate uptake rate by reducing substrate efflux In collaboration with :

نویسندگان

  • Evert Bosdriesz
  • Bas Teusink
چکیده

Cells require membrane-located transporter proteins to import energy and carbon sources from the environment. Many organisms have several similar transporters for the same nutrient, which differ in their affinity. Typically, high affinity transporters are expressed when substrate is scarce and low affinity ones when substrate is more abundant. The benefit of using low affinity transporters when high affinity ones are available remains unclear. We investigate two hypotheses: (1) It was previously hypothesised that that a trade-off between the affinity and the maximal catalytic rate explains this phenomenon. We find some theoretical and experimental support for this hypothesis, but no conclusive evidence. (2) We propose a new hypothesis: namely that for uptake by facilitated diffusion, at saturating extracellular substrate concentrations, a lowering of the affinity can in itself enhance the net substrate uptake rate. Reducing the transporter affinity reduces the substrate efflux rate, and, as a consequence, an optimal transporter exists affinity that is dependent on the external substrate concentration. This tuning of affinity to external concentrations might explain the abundance of glucose transporters in yeast. Indeed, an in silico analysis of glycolysis in Saccharomyces cerevisiae shows that using the low affinity HXT3 transporter in stead of the high affinity HXT6 enhances the steady state flux by 36%. Our results provide a novel reason for the presence of low affinity transport systems that might have implications for more general enzyme catalysed conversions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biogenic amine flux mediated by cloned transporters stably expressed in cultured cell lines: amphetamine specificity for inhibition and efflux.

LLC-PK1 cells have been stably transfected with cDNAs encoding the human norepinephrine transporter (NET), rat dopamine transporter (DAT), and rat serotonin transporter. Using these cell lines, the specificity of each transporter toward agents that inhibit substrate influx and stimulate substrate efflux across the plasma membrane was examined. With 1-methyl-4-phenylpyridinium as a substrate for...

متن کامل

Expression of Drug Pump Protein MRP2 in Lipopolysaccharide-Treated Rats and Its Impact on the Disposition of Acetaminophen

The drug pump protein MRP2 is a membrane drug efflux transporter widely distributed in normal and tumor tissues. Its role is thought to be crucial for the disposition of many drugs and their substrates in different tissues. In this study, we aimed to examine the effects of systematic inflammation induced by lipopolysaccharide (LPS) on the expression and function of this transporter in rats. Jug...

متن کامل

Role of orFD Pseudomonas aeruginosa H103 Gene in Glucose Uptake

Background:Pseudomonas aeruginosa is a gram negative non facultative bacterium and one of the members of normal flora in different sites of body in healthy humans.this bacterium can resist in fluids and hospital environments for a long time.Pseudomonas aeruginosa has two systems for glucose uptake:a low affinity oxidative pathway and a high affinity phosohorylative pathway.Although the role of ...

متن کامل

Expression of Drug Pump Protein MRP2 in Lipopolysaccharide-Treated Rats and Its Impact on the Disposition of Acetaminophen

The drug pump protein MRP2 is a membrane drug efflux transporter widely distributed in normal and tumor tissues. Its role is thought to be crucial for the disposition of many drugs and their substrates in different tissues. In this study, we aimed to examine the effects of systematic inflammation induced by lipopolysaccharide (LPS) on the expression and function of this transporter in rats. Jug...

متن کامل

Understanding transporter specificity and the discrete appearance of channel-like gating domains in transporters

Transporters are ubiquitous proteins mediating the translocation of solutes across cell membranes, a biological process involved in nutrition, signaling, neurotransmission, cell communication and drug uptake or efflux. Similarly to enzymes, most transporters have a single substrate binding-site and thus their activity follows Michaelis-Menten kinetics. Substrate binding elicits a series of stru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015